If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+12x-1.9=0
a = 4.9; b = 12; c = -1.9;
Δ = b2-4ac
Δ = 122-4·4.9·(-1.9)
Δ = 181.24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-\sqrt{181.24}}{2*4.9}=\frac{-12-\sqrt{181.24}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+\sqrt{181.24}}{2*4.9}=\frac{-12+\sqrt{181.24}}{9.8} $
| 4(x-2)=-5(x-12) | | x-18=5x+2 | | 0=4(-x)3+3(-x)2 | | 5-0.002x=0 | | -2x+2+3x=-1+7 | | x=6x2−5x+10 | | 2x-4=2(x-1)+23 | | X+2.5x=4,480 | | -23=p-3 | | (5-2i)+(13-8i)=0 | | 3500=x(0.07)(1) | | 0=4x3+3x2 | | 3500=xx0.07x1 | | 6z+15=11z-2.5 | | 7w-11/2=-5 | | 11m+2=12m-6 | | 3y+12+y+30=180 | | -29+8b=-2(4b-6) | | 3/5+x=7/6 | | -11=13/5x | | 3x^2+6x-797=0 | | 16+3b=70 | | y+3.85=2.45 | | 234=r*4 | | 0=80+12x-4.9x^2 | | 3^(5x-1)=14 | | 0=80+12t-4.9t^2 | | 17x-2=-2x-29 | | 23(x-67)=21,850 | | x+11=16+4x | | 9b^2+0.27b=0 | | 1/2k=20 |